Specifications

General parameters

Dimensions (W x H x D)	286*225*98mm
weight	Approx. 3.9 kg (including 1 battery)
screen size	10.1 inches (1280*800)
touch screen technology	Capacitance
Operating temperature	-10°-45°C(14°-113°F)
storage temperature	-25°-60°C (-13°-140°F) (with built-in battery
USB 3.0	2
wireless connection	Wireless/Gigabit Ethernet port
Encoder Interface	2-Axis

Software features

Maximum Amplitude:	800%
Wireless Remote Control:	wireless remote control Supported
TOFD Function:	Supported
ACG/TCG:	ACG and TCG recorded simultaneously
Independent ACG/TCG:	ACG and TCG recorded independently.
Focusing Modes:	Depth, Sound Path, Horizontal
Instrument Self-Test:	Supported
Custom Delay Laws for Focusing:	Supported
Interface Wave Tracking:	Supported
Sound Velocity Measurement:	Supported
Wedge Calibration:	Supported
Offline Analysis Function:	Supported
Custom View Layout:	Supported

PA configuration

PA configuration	32:64PR
Inspection technology	PA
Number of digits	16 bits
Maximum number of focal laws	1024
Gain range	0-80 dB
pulse voltage	200V
Pulse Width	20ns to 1250ns
system bandwidth	0.4 MHz to 18 MHz
Voltage Adjustment Step	1V
Voltage Mode	Bipolar
Pulse Width Step	1ns
Pulse Repetition Frequency	8KHz
PA connector	1
Gain Step	0.1dB
Scanning Modes	A-scan, S-scan, Linear Scan
Display Images:	A, S, E, C, D, TOFD
Digital frequency	200MHz
Rectification Modes:	Half-wave, RF
Bandwidth:	0.4 MHz to 18 MHz

Conventional UT Channel Parameters

Conventional UT Channels	1
Pulse voltage	200V
Voltage Adjustment Step	1V
Voltage Mode:	Unipolar Square Wave
Pulse Width	20ns to 1250ns
Pulse Width Adjustment Step	lns
Pulse Width Adjustment Step Pulse Repetition Frequency	1ns 8KHz
Pulse Width Adjustment Step Pulse Repetition Frequency Bandwidth:	1ns 8KHz 0.4 MHz to 18 MHz
Pulse Width Adjustment Step Pulse Repetition Frequency Bandwidth: Gain range	1ns 8KHz 0.4 MHz to 18 MHz 80dB

PHASEYE S Ultrasonic Phased Array Flaw Detector

Portable, Lightweight, Compact, Yet Powerful

PHASEYE S - Ultrasonic Phased Array Flaw Detector

PHASEYE® Phased Array Instrument, power cord, and a printed 'Quick Start Guide'.

1. Standard Kit Components

The kit includes the latest version of PHASESOFT software, a hard carrying case, a calibration certificate, a lithium-ion battery, an anti-glare screen protector, a DC charger with a power cord, a USB drive with software and user manuals, and analysis software.

Phone: +86 400 022 6762

Eintik Technology(Shanghai) Co., Ltd

sales: sales@eintik.com Web:www.eintik.com Address: Floor 3, Building No. 9, Lane 258 Yinlong Road, Jiading District, Shanghai 201813, P.R.C

Products have been certified by ISO 9001 Quality Management System, ISO 14001 Environmental Management System, and ISO 45001 Occupational Health and Safety Management System. The information in this document was accurate at the time of its publication, and actual products may differ from those described herein. PHASEYE® and its associated logos are trademarks registered in China. All technical specifications are subject to change without notice.

PHASEYE - Ultrasonic Phased Array Flaw Detector

Designed for the Field: Precision in Every Condition -

PHASEYE S The Latest Generation of High-Performance Ultrasonic Phased Array Flaw Detector

in annio		N 16.391536	1854 NOV ANNUE 💼 🖛 + 5	8HL
n 🖬		10 30.0 6.0 400	KM	
268.4		•		
6.14				
6.14				
0 7 Apres		•		< 0
- 42.2			20 00 bu	
2.07	2			_
268.4			-	
A5.				-

film.	HRIDATOR						2010020-10030	20 an	• •	■ # 2	#H5 🛛 🗏
	Ξ	v			15.0		0.0			9	8
	1366	10		36			53745		Six.	200	ц
			1.	N.			2.2 em-	Cherry P	P.M.	12	+
	12.02		-	1	C Series	1	149.7	6	12%	38 R.	
		*						•	29.5		100
			- "	58	100	-	121			1.21-	
~				123	13		12	X	X	1	0
	-31.8	8					_		_		13
		8									c_ds>
	1366	8						_			
		. 1							_		
	136.6										
		8									

The Phaseye S continues the design style of Phaseye, offering simple and convenient operation. The instrument's settings can achieve a guided operation mode effect while also allowing for flexible and rapid adjustment of related parameters as needed. The Phaseye S is lightweight and compact, with a small instrument size that maintains a relatively large display for optimal viewing. The hardware performance of the Phaseye S is robust, equipped with powerful phased array capabilities. The Phaseye S supports A-scan, sectorial scanning, and linear scanning modes, as well as single-beam C-scan display and fused C-scan display. It also supports single-beam D-scan and fused D-scan display, along with TOFD scanning modes, capable of simultaneously displaying TOFD and phased array inspection images.

With its independent 32 channels and support for up to 64-element probes, the Phaseye S meets the basic phased array inspection application requirements of various industries. It is especially suitable for field inspection applications where portability is highly demanded."

Detector Highlights:

- Supports a maximum amplitude of 800%, ensuring signal integrity without overflow even in highly sensitive detection requirements.
- Advanced ACG/TCG functionality with support for manual TCG, independent ACG/TCG recording, and simultaneous ACG/TCG recording.
- The instrument features self-diagnosis capabilities, allowing for real-time testing of the probe and instrument status.
- Powerful interface wave tracking function, with TCG position dynamically adjusting in real-time based on the interface wave.
- Supports remote operation control via a wireless remote controller, meeting the demands for flexible control in field environments.
- Flexible custom view layout, allowing for the customization of the best view mode according to inspection application requirements.

PHASEYE SApplication Scenarios

Weld Inspection

The Phaseye S is particularly suited for field weld inspections, offering flexible view layout settings. It supports single-beam C-scan and fused C-scan displays, single-beam D-scan, and fused D-scan displays, providing comprehensive defect information. The system automatically identifies defects and provides equivalent values, lengths, heights, and other relevant defect information.

Composite Material Inspection

The Phaseye S, combined with a roller probe, is a cost-effective solution for composite material inspection. The roller probe is convenient to operate, and the Phaseye S is portable and compact, making it particularly suitable for on-site maintenance and inspection of composite materials. It can detect various types of composite materials and also has a good detection effect on honeycomb composite materials.

Corrosion Detection

The Phaseye S, when used with corrosion detection probes, is highly suitable for in-service inspection of corrosion in containers and pipelines. It is capable of obtaining internal corrosion profile information and determining the minimum remaining wall thickness. This enables accurate assessment of the remaining service life of containers and pipelines. A C-scan image provides a map of the corrosion distribution over the entire scanned area.

PE Pipe Electrofusion Welding Inspection

The Phaseye S, used in conjunction with PE pipe electrofusion welding inspection probes, is suitable for on-site inspection of PE pipe welding. It is portable and convenient, capable of clearly displaying signals from each resistance wire. The quality of the welding can be assessed based on the resistance wire signals, and the depth of fusion can be determined through the signal images of characteristic lines.

